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Background Existing Method [Artetxe+ 2018b]
Only a few languages have sufficient resources Learn CLWE in an unsupervised manner by iterating

for supervised learning (esp., deep learning) . Pilingual dicti\onary induction and learning mapping
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Need high-quality CLWS for resource-rich (English)
and resource-poor languages
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Evaluation [Results (Top1 Accuracy)]
Task: Bilingual dictionary induction Results on Wikipedia embeddlngs Results on Twitter embeddings
Predict the word translation from
the source (English) to the target language
[Artetxe+ 2018b] (unsupervised) 0.457 0.439 0.809 0.771 [Artetxe+ 2018b] 0.290* 0.783 0.522 0.439

Settings Proposed 0.487* 0.455* 0.809 0.779 Proposed 0.281 0.791* 0.553* 0.443*
o Monolingual word embeddings: [Artetxe+ 2018a] (supervised) 0.518 0.437 0.794 0.759 * statistically significant (p < 0.05)

Proposed + MUSE dict.

: . BN
tastText pretrained on Wikipedia Join the MUSE dictionary with the refined 0.521 0.477* 0.803 0769  Siqnificant improvements

» fastText pretrained on Twitter corpora dictionary in Proposed method o ey
’ Blllngual d'Ct'Onary: * statistically significant against baselines (p < 0.05) of Slml ar ahguage palrs. 0o
MUSE bilingual dictionary? Possibly, Twitter embeddings have
« Target languages: Our method advanced the state-of-the-art more ambiguity In translation

Japanese, Finnish (distant),

_ _ N for UnSUperVised and SuperVised CLWE 'https://fasttext.cc/docs/en/pretrained-vectors.html
Spanish, ltalian (similar)

https://github.com/tacebookresearch/MUSE

Analysis Conclusion

Exploit subword alignment for CLWE for refining
a bilingual dictionary used to induce CLWE

Top-5 word pairs with highest subword alignment score

croatia kroatia international internacional < |mproved quality of CLWE in distant language pairs
constantin ~ konstantin secretaries  secretarios [Remaining Problem]
Israelis israelin territories territorios The accuracy for distant language pairs are still lower
india intia mercenaries mercenarios then similar languages
socrates sokrates initial inicial

Possibly because:
» Difference in grammar
» Difference in word segmentation

s oo Subword alignment model successfully learns
™ how words are imported across languages
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